Centromeric Heterochromatin: The Primordial Segregation Machine
نویسندگان
چکیده
منابع مشابه
Centromeric heterochromatin: the primordial segregation machine.
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases...
متن کاملRNAi and heterochromatin repress centromeric meiotic recombination.
During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed spec...
متن کاملFission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications.
Heterochromatin is a functionally important chromosomal component, especially at centromeres. In fission yeast, conserved heterochromatin-specific modifications of the histone H3 tail, involving deacetylation of Lys 9 and Lys 14 and subsequent methylation of Lys 9, promote the recruitment of a heterochromatin protein, Swi6, a homolog of the Drosophila heterochromatin protein 1. However, the pri...
متن کاملDifferential maintenance of DNA sequences in telomeric and centromeric heterochromatin.
Repeated DNA in heterochromatin presents enormous difficulties for whole-genome sequencing; hence, sequence organization in a significant portion of the genomes of multicellular organisms is relatively unknown. Two sequenced BACs now allow us to compare telomeric retrotransposon arrays from Drosophila melanogaster telomeres with an array of telomeric retrotransposons that transposed into the ce...
متن کاملChromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus.
Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric alpha-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distribute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Genetics
سال: 2014
ISSN: 0066-4197,1545-2948
DOI: 10.1146/annurev-genet-120213-092033